Kuiper DL Inference 推理
info
Introduction
什么是推理框架?
深度学习推理框架用于对已经训练完成的神经网络模型文件进行加载,并根据模型文件中的网络结构和权重参数对输入图像进行预测。换句话说,深度学习推理框架就是将深度学习训练框架Pytorch和TensorFlow中训练完成的模型,移植到中心侧和端侧并且在运行时高效执行。另外,与深度学习训练框架不同的是,推理框架没有梯度后向传播的过程,因为在推理阶段模型的权重已经固定,不需要利用后向传播技术进一步进行调整。
例如对于一个Resnet分类网络的模型,深度学习推理框架先对模型文件中的网络结构进行读取和载入,再读取模型文件中的权重参数和其他参数、属性信息填入到Resnet网络结构中,随后推理框架将不同的图像放入到计算图的输入中,并执行预测过程,从而得到其归属的类别。以下的图示是我对如上内容的总结:

KuiperInfer Overview
KuiperInfer可以分为以下的几个模块:
Operator:深度学习计算图中的计算节点,包含以下的几个部分: